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T?~~The optimization problem as tormulated in the METRIC model +3~~ 
takes

J the form of minimizing the expected number of total system backorders

7 in any two—echelon inventory system subject to a bud get constra int.

To s l~ e this problem, one needs to find the optimal Lagrangian multi—
pli e~~~ associated with the given bud get constraint .

For any large scale inventory system , this task is cornputationally
not trivial. Fox and Land i proposed one method which was a significant

improvement over the original METRIC algorithm.—~- In this report we first

develop a method for estimating the value of the optima l Lagrangian

multip lier used in the Fox~-Landi a1gorithm~ p~r~&~nD~ alternative ways
for determining stock levelsA and ~~~~a~~~ these pruposed approaches with

CL~ ‘ ~- , -

the Fox—Landi algorithin,~ u~ ing two hypothetical inventory systems——one

involving 3 bases and ;‘s items; the otrier has 5 bases and 125 items. The

compar ison shows tha t the computational time can be red uced by near ly

50 percent .

>Ano ther factor that contributes to the higher requirement for con—

putational time in obtaining the solution to two—echelon inventory sys-

tems is that it has to optimally allocate s tock to the depot as well as
to bases for a given total system stock level. This essentially req uires

the evaluation of every poss ible combination o
,~~~~

pot and base stock

levels——a time—consuming process for many ~ractic~\inventor~ problems

with a sizable system stock level. This report olso suggests a simple

approximation method for estimating the optimal depot stock level.

When this method was app lied to the same two hypothetical inventory

sys tems indicated above , it was found that the estimate of optima l depot
stock is quite close to the optimal value in all cases. Furthermore , the

increase in expected system backorders using the estimated depot stock

levels rather than the optimal levels is generally small.

/
The economic interpretation of(a L.agranglan multiplier is a reduc—

t ion in backorder or shortage that can cone about because of an increase
in the investment in inventory)

Ap proved 1-- -
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Further research will be required to estimate more precisely the

redLctlon in computational time if these approximation methods are

incorporated in the requirements computation sys tem for re coverable

spares (D041) by the Air Force . For instance , we would have to app ly

the proposed methods to stratified samples of recoverable items from

the  D041 system and extrapolate the results on an Air Force—wide basis.

Nevertheless , even on qualitative grounds , the proposed methods are so

simple and reasonably accurate , our conclusion is that its implementa—

don will be beneficial .

I
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I. INTRODUCTION

Almost a decade ago Sherbrooke formulated the well—known METRIC

model for determining optimal stock levels for recoverable items——

items subject to repair when they fail——in a two—echelon setting [3].

Briefly, the two—echelon system he studied consists of several- loca-

tions, called bases , at which primary demands occur; these bases are
in turn resupp lied as necessary by a central repair and inventory
stocking point called a depot. When a failure occurs at a base, a

demand is placed on base supply for a corresponding replacement part .
The failed part is then either repaired at that base or is sent to the

depo t for repair depending on the nature of the failure. Resupply of

base supply comes from the base maintenance organization if repair is

accomplished at the base; otherwise , resupply comes from the depot.

In either case, the organization resupplying the base supply ac tivity

does so by exchanging a serviceable part for the failed part. Thus the

inventory policy for placing orders on the base ’s maintenance organiza—

tion or the depot is an (s — l,s) policy.

Sherbrooke presented a model for determining both depot and base
stock levels for all items for this system. In particular , the problem

he formulated was to minimize the average total number of base back—

orders existing at an arbitrary point in t ime subject to a constraint

on system investment , that is,

mm ~ ~ (x - 
~~~~~~~~~~~~~~ 

(s .c ))
~j= l  i=l x>s . -13

(P 1)

subject to 
~ 

c .s1. < C ,
j~ O i=l

where n = the number of items ,

m = the number of bases ,

s . = the s tock level at base j for item i,

- ~~~~~~~~~
-
~~r---
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= the depot stock level for item 1,

= the expected daily demand rate  for  item i at base j ,

c . = the unit cost for  item i ,

C = -the budget constraint ,

T
mi 

(s
10

) = the average resupply time for  base j fo r  i tem i

given the depot stock level for item i is s~0, and

p(x~y) = the probability that x units are in the resupp ly

sys tem given that the expec ted number of units in

the resupply system is y.

Furthermore, Sherbrooke shows that T ..(s.0) can be expressed as

T
1
.(s.0) = r1. A .. + (1 - r . .)(B .. + 6(s.0) D .)

where A .. = the average base repair time for item I at base j ,

r , .  = the proportion of demands requir ing base repair
for item i at base j ,

B .. = the average order—and—ship time at base j for
item i,

D~ = the average depot repair cycle time for item i,

6(s.o) Di 
= (1/A.) ~ Cx — s.o)p(xlX i

D
i
), the expected

x> siO

delay per depo t demand for item I, and

= 

j l  
(1 — rj.)A i., the expec ted daily depo t demand

for item i.

In the remainder of the report , i will refer to an item and j will
refer to a base (j = 0 represents the depot). Thus i and j will al—
ways be elements f the sets {l, . .., n} and {o , . . . , m}, respectively.

Add it ionally, an integer k appearing in the text to the right of the

statemen t of a problem or equation will designate for future reference

that problem or equation . For complete descrip tion of problem back--

ground and formulation , see Ref. 3.
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Subsequently Fox and Landi suggested a Lagrangian approach for
solving problem P1 [2]. One obstacle to the implementation of METRIC

using the Fox—Landi algorithm is the requirement of estimating an ap-

propriate value for the Lagrangian multiplier. Another important and

related problem is the lengthy computer run time required to obtain
an optimal solution to problem P1 when using their algorithm . A large

portion of this computational effort is related to searching for the

optimal depot stock level. This search is particularly time—consuming

for Items having a high average number of units in the depo t repair
cycle since the amount of computation required by their algorithm is
roughly proportional to the number of depot stock levels explicitly
examined.

In th is report we first develop an approach for obtaining an esti-

mate of the optimal Lagrange multiplier value required in the Fox—Landi

algor ithm, present two new methods for de termining stock levels, and
compare these methods with the Fox—Land i method and other techniques.

The proposed approach eliminates the particularly time—consuming por—

tion of the Fox—Landi algorithm devoted to searching for the best

Lagrange multiplier value and significantly reduces computation time

for determining stock levels without degrading the quality of the

solution.

We then present a method for estimating the optimal depot stock

level. Limited computational experience indicates that this method is

easy to implement, provides a very good estimate of the optimal depot

stock level, and is particularly useful for items having a high average

number of units in the depot repair cycle . For these items it is pos-

sible to reduce computation time required by the Fox—Landi algorithm

by as much as 90 percent.



II. THE APPROXIMATION PROBLEM

In this section we first construct a problem that is a continuous

approximation to problem P1. We then state and prove two theorems that

are the basis for an algorithm that can be used to solve this approxi-

mating problem.

Recall that the total average base backorders existing at any

point in t ime for item i can be expressed as

~ (x - s..)p(xIX ..T..(s.0))
.]1 x>s.

13

Two usef ul probab ility distributions for describing the demand process

are the Poisson and negative binomial distributions . As shown in

Ref. 1, this implies that if demand has a Poisson or negative binomial

distribution , then for a given value of X~~.T..(s.0), 
~~~~~~~~~~~~~~

the probability distribution representing the number of units in re-

supp ly of item I at base j at any point in time , is a Poisson or nega-

tive binomial distribution , respec tive ly.

Experimental data gathered during the conduct of this study m di—

cate that when p(x IA.. T..(s.0)) is either a Poisson or nega tive binomial
dis tribut ion, the above total expected backordei. expression can be
closely approximated by an exponential function . That an exponential

function accurately approximates this expression should not be ent irely

unexpected . First , for budge ts of practical interest , the item stock
levels , S .., are normall y much larger than the average demand during
the resuppl y time . In fact , the probability of running out of s tock
during the resupply time is often much less than .15 in real app lica—

tions. Thus the only probab ilities entering the backorder calculation

are the tail probabilities of the distribution. In the tails , both the

Poisson and negative binomial distributions behave almost like the

geometric distribution ; that is, each succeeding probability is roughly
a constant proportion of its predecessor. Consequently, when s

ij 
is

. - -
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large relat ive to X
i~
T ..(S .0)~ the expec ted number of backorders

existing at any time at location j for item i is approximately a geo-

metric function of s .. . Therefore, an exponential function is a use—
13

ful continuous approximation to this relationship between exp ected

backorders at a location and the item ’s stock level at that location.

Furthermore, total expected base backorders exhibit this same
behavior. If demand has either a Poisson or negative binomial dis-

tribution (or, for that matter , any compound Poisson distribution),

then the total number of units of an item in res upply across all bases

has a Poisson or negative binomial distribution , respect ively , given

we assume independence of demand and common variance—to—mean ratio

among bases. Since in most practical situations total system stock

subs tantiall y exceeds the total expected number of units in resupply ,
the tail of the distribution describing the total number of units in

resupply is the only portion of the distribution of importance . As an

approx imation , this distribution can be used to determine the nature of

the relationship between total expected base backorders and total system

stock. For the reasons discussed previously, an exponential function

should also adequately represent this relationship.

Thus we will approximate

m

~ (x — s.jp(xIX ..T..(s.0))
j ’~l x>s

ii

with the exponential function

-b .N .
— 1 1

B .(N.) = a .e
1 1 1

In this approximation , N . represents total system stock. In pr~~ t ire ,

t he  p ar amet -r ~ 
~~

. ~ C) and b .  > 0 are e s t i m a t e d  u s i n~ ~ec r c s sio n  a n a l y —

sis . The d a t a  used in the regression analy~ is are  t h e  h a r k r r d e r  uat.~

obtained from the solution to the problem

— -   -
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mm ~ (x - s . . ) P ( x l A 1. T~~.( s 10
))

j= l  x>s ..
13

subject to s.. = N .  , and
j=O 13 1

s.. = 0 , l, ..., N .
13 1

for  several appropr ia te  values of N ..

We now formulate a continuous approximation to problem P1 in

which the exponential r ep resen ta t ion  of t o t a l  sy s tem backorders  fo r

an item is used . In this approximation problem , the decision var i-

ables are the total system stock , N ., rather than the stock levels

for each location , s... As we shall see , the am reason for studying

this approximation problem is that it is a vehicle for obtaining an

estimate of the optimal Lagrangian multip lier value used in the Fox—

Landi algorithm . The approximation problem is formulated as problem P2:

mm 
i~l 

B~ (N.)

subject to 

~ 

c .N . < C , (P2)

where N
1

> O

Note that N . is a continuous variable in this approximation. The

optimalitv conditions (Kuhn—Tucker conditions) for this problem are

as f ollows:
Find 01 

> 0 such t h a t

(a) ~~-~- + 0 1
c
1

> O

~
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(1,) 
1=1 

c~ N~ < C

N . > 0
1=

(c) 0
1 
(i~ l 

c .N~ - 

C) 
= o

dB
(d) N

1 

~ 
+ 

~~~~~ 
=

A relaxed version of problem P2 in which the non—negativity con—

straint  on the item stock level is removed is problem P3:

mm B . (N.)

(P3)

subject to 
i=l 

c m N1 
< C

The optimality conditions for this problem are:

Find 02 
> 0 such that

(a)

(b) 
i~1 

cjN~ 
< C

(c) 02 (
~ 

c1N~ - = o ,

(d) N~ (
~ 

+ 02c
1) 

= o .
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We now exp lore the rela t ionship between probl ems P2 and P3 in
detail.

* 1Suppose we obtained a solution to problem P3. Let N . represent

the optimal solution to problem P2 , and N~ represent the optima l solu-

tion to problem P3. If N~ > 0 for  all i, then N~ = N~ and the objec-

tive function values are equal.

Suppose , however , that N~ < 0 for at least one value of i. Let

= max(O , N~)

and

c~~ J1 c1N .
Since N . > N~ f or all i and N . > N~ for  at least one 1, C > C.

Suppose problem P2 is modified slightly so that the right—hand
side value C is replaced by C. This modified problem is problem P4:

n
mm 

~ 
B
i

(N .)

n
subj ec t to ~ c

1
N . < C , (P4)

i=l

where N
1

> O

The opt iniality conditions for  this problem are the same as those given

for  problem P2 a f t e r  subst i tu t ing  C fo r  C. Also , let U represent the

optimal value of the Lagrang ian mul tiplier for problem P4.
In solving problem P3 , we will obtain a value for 02~ We now

show that 0 0
2~ 

and that N
1 

= max(O, N~) is an optimal solution to

*Section III develops the method for determining the solution to
problem P3. 

-~~~~~~~~~~~~~~~~~~~~~~ .
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problam P4 by demonstrating that these values satisfy the Kuhn—Tucker

conditions corresponding to problem P4 .

By construction,

~~~~~~~~~~~~~ ~L1~~ o and

If 0 = 02~ 
0 > 0 since 0

2 
> 0. Suppose N. = N~~, that  is , N~ > 0.

Then

dB . dB .
1 

— 
1

dN . 
— 

dN .
1 N. N.  1 N .=N~1 1 1 1

and

dB . dB .
1 1 —

0 =—  + O c ~ 
= —  +O c .dN . 2 i  dN .1 

N .”N~ 
1 N=N .

By assumption there exists at least one value of i for which

N. > N~ ; tha t  is , N . = 0 while N~ < 0. Since
1 1 1 1

dB . dB .
> _ ~2~:dN . dN .

N . 0 1 N . <O
1 1

due to the exponential form of B .(N.), and

dB .
+ 0 2ci = 0

~ N .=N~1 1

we know that 

~~~~~ - -~~~~~~~ - ,—-~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~
- -
- .-
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dB
+oc

i > O

~ N
i
=O

Consequently,  the optimal solution to problem P4 is N
i 

= =

max{O, N~}. Furthermore, the optimality conditions are satisfied

when 0 is equal to

Theorem 1. O i ~

Proof: The optimal objective function value for problem P2 is a

convex, differentiable, strictly decreasing func tion of the available
budget , C. Since the slope of this function is equal to the negative

of the Lagrangian multiplier value , 01 > 0 since C < C. But 0 2 = C ,

so 01 ~

Corollary. 0
1 

> 02 Whef l C > C.

Next we compare N~ with N
1
. If C = C, then N~ Ni for all i.

Now let us suppose C > C so that 0
1 

> 02 = 0. Let us examine the two

cases N
1 

> 0 and N
1 

= 0 separately.

First, assume N1 > 0. Then

dB

— 

+ 0 e 1 = O .

~ Nj Ni

Furthermore, if N~ > 0, then

dB

dN
i

Since

— dBelci > 0C
i

_
~~~rij 

‘
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dB1 dB1
dN1 — 

dN
N=Ni i  i i

and N~ < If = 0, then N~ > N~.

Next assume N1 = 0. Since

dB dB 
—

+Oc 1~~~Oi N=O ~~N Oi i

it follows that N~ 0 by complementary slackness. Thus we have

proven the following theorem.

Theorem 2. N
i 

> N~; additionally, N1 > N~ whenever > 0.

In this section we established several important relationships

amon g problems P2, P3, and P4. In Sec. III we develop a simple algo-

rithm for solving problem P2 based on these relationships and show

how to find the solution to problem P3. As we have just demonstrated ,

once we have the solution to problem P3, we also have the solution to

problem P4. From Theorem 2, we then have an upper bound on the values

of the N~ . In particular , if N1 
= 0, then N~ = 0. Combining this

observation with the implications of Theorem 1 and its corollary pro-

vides the basis for the proposed algorithm for solving problem P2.
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I I I .  COMPUTING OPTIMAL SOLUTIONS FOR PROBLEM S P2 AND P3

I

We begin this section by developing a method for de term ining the

optimal solution to problem P3. Observe that the optimal solution

mus t satis fy  the following two cond itions:

dB .

and

~ 

c .N~ = C

The second condition must hold since each B
1

(N
1

) is a s t r ic t ly  de—

creasing function of N
1
.

Since

- b N
B1(N 1) = a~e ~

where ~~~ b1 
> 0, the first condition states that

—b 1N1a b e

2

or

O~~~~ n 0  =in (~~~~~~~
_ b N  .

2 ~~~c1j  ~~~~~~

Letting

d ~~~~~~~~I \ C j /  

.
~~~~~~~~~~~~~~~~ . . - -~~~~~~~~~~

.—- -—“
~~~

- - -  --
~~~
--. --
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we see that

- 0
N1

= b.
1

From the second condition we know that

~~~ 
(d

i~~ 

~~

)= 
C

Thus

= 
i—l 

(c
~
d
~
/b1) — 

C

~~ (c~ /b1
)

11

Letting

n c d .  n c
11 ~‘ I

and 
~ L i~j ’1=1 1 i=l i

we can express 0 as

A a - C
B

Thus

0 2 = e~~~~~~
’B (El)

and

d _ a C  gj + c
N =

1 B = , (E2)
i b 1

—=c:; --— --—

~

--- - -~~ -~~—~ ~~— r _~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - __ ._iill~~~
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whei~e g1 
= Bd1 

— a and f
1 

= Bb1. Consequently , N1 is a linear function
of C. If the budget is incremented by an amount t~C, then N~. the new

value of the stock level for Item 1, satisfies

= N~ +

The optimal solution to problem P2 has been found if each of the

N
i 
found using Eq. (E2) is non—negative. If there exists an i for

which N
1 

< 0, then we may employ the following algorithm to find the
optimal solution to problem P2. Let I = (1, ... , n} and N~ represent

the optimal solution to problem P2.

Step 0. Solve Problem P3 as described above, thereby obtaining

an initial value for N
1, I c I.

Step 1. Set N~ = 0 for all N
i 

< 0 during the last iteration and

delete the corresponding I from I. Recompute a and B, where

ç c1d1
~

iCI ( I

and

Step 2. Using Eq. ( E 2 ) ,  obtain new estimates of N . f~r each

i c I. If Nj > 0 for all 1 c I, then the optimal solution has been

found , and N~ = N
1 

for all I C I and N~ 0 for all I = 1, ..., n for

which I ~ I. If there exists some I for which N . < 0, return to

step 1.

It is clear that our solution satisfies all the optimality cond i-

tions for problem P2 except possibly condition (a) for i ~ I .  However ,

at an earlier iteration (when i was deleted from 1) we had

~

- -

~

--

~

- - -
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dB
I

~~~ N1~~1 

02c1 
= 0

where 
~ 2 

and ~t1
(<O) are the earlier values of 0 2 and i~ , respectively.

Since dB 1/dN 1 
is clearly increasing in N 1, and 0 2 increases at each

iteration (Theorem 1 and its corollary), condition (a) must hold . Con—

vergence is guaranteed since n is f i n i t e . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-- .—- —-

~~~ 
- — -  - -  _ _ _
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IV. A COMPARISON OF ALTERNATIVE SOLUTION PROCEDURES

FOR SOLVING PROBLEM P1

In this section we review three  algorithms for solving problem P1

and compare them to two algori thms designed to obtain a solution for

problem P1 based on the solution to the approximating problem , problem

P2.

THE SHERBROOKE PROCEDURE

The f irs t algori thm , a proced ure orig inally proposed by Sherbrooke

[ 3 ] ,  is a marg inal analys is algori thm consisting of two phases. In the

first phase, each item is examined independently . The op timization

problem solved for item i in the f i r s t phase has the form:

mm ~ (x - s..)p(xIX ..T.1 (s10
))

j l  x>s ..
13

m
subject to ~ s.. = N . , (PS)

j=O ~

where s .. = 0, 1, ...,
13

and N . is the total system stock available f or dis tribution among the

depot and bases. Let Z.(N .) represent the optima l objective function

value for problem PS given N 1 units are available 
for distribution .

Problem PS is solved by obtaining the solution to the N . + 1 problems

~ 1
(N ., s.c) = mm ~ (x - 

~~~~~~~~~~~~~~~~~~~~j=l x>s .ij

subject to 
~~ 

= N~ 
— 5

~o 
(P6)

where s~~ = 0, 1, ...,



--
~ 
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and s . is fixed for s. = 0, 1, ..., N . Problem P6 can be solvediO iO I
via marginal analysis . Then

z.(N.) = mm ZJN ., sf0) ,

where s
~ o 0 , ..., N . .

The second—phase problem is

n
tnin ~ Z .(N .)

- 1 1i=l

subject to 
1=1 

c
1
N
1 < C ,

where N . = 0, 1 

Sherbrooke [3] suggests that a marginal analysis algorithm be used to

find a solution to this knapsack problem. Clearly other procedures

could be employed to obtain an optimal solution. In any case, this

approach requires a substantial amount of storage to save all the

Z
1

(N
1
) values. For moderately sized problems——several thousand items——

a storage requirement of io6 or more words may be needed to save these

values. Furthermore , the computation time required to obtain these

Z
i
(N.) values for such problems is very large.

THE FOX AND LAND I PROCEDURE

Subsequen tly Fox and Landi [2] proposed a Lagrangian algorithm
for solving problem P1. In particular , they formulated the relaxed

version of problem P1 as problem P7:

—
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mm ~ (x — s
iJp (xIA . . Ti.(s.o ) )  + 0 ~ ~ c 1 s

j=l 1=1 x>s . .  -‘ -‘ j=O 1=1
13

(P7)
where s • = 0, 1,

13

and 0 is the Lagrangian multiplier. Since problem P7 is separable by
item, its optimal solution can be found by solving the n individual

item problems

mm ~ (x - s
m~

)P (xIX 1~
T
i~
(s
1o

) )  + 0 c .s. .
3=1 x>s.. j=0

13

subject to 
~~~ 

= 0, 1 

This problem , like problem P6 in Sherbrooke ’s two—phase method , is

solved using a partitioning procedure , that is, it is reformulated as

mm Oc.s10 + mm
s.0=0,l,... j=l s~~=O~l~ . - .

(P8)

(x - s..)p (xIX . . T..(sm 0 ))  + Oc .s . . : s~0 fixed
}
~

or equivalently as

mm Z(s. ; 0)
10

(P9)

where s10 0, 1, ...

and 

—~~~~~~~~~~~~~~~~~~~~~ -~~~~-— --~ —~~~~~~~~~ -~~~~~~~~ —- -— --- - -- -—-— - - —  ~-—-- - - --~~~~~~~~~~~~~
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Z(s .0 ; 0) = Oc
1
s.0 + 

.
~~~ min

{ 
~ (x - s..)p (xIX ..T..(s10

) )
j l s . x>s . .

13 13

+ 0c .s. • : s.. = 0, 1, .. ; s . fixed
113 13 iO

To determine Z(s .0 ; 0 ) ,  solve the m base problems

~~~ xL . .  

(x - s
~1

)P(xIX i~
T1~

(si0)) + 0c .s..

The optimal s~~. is the smallest non—negative integer for  which

~ P(x Ix 1~T1~(s
10

)) < 0c .
x>s..

13

Problem P8 is solved for each item for a given value of 0. This

yields a total investment cost corresponding to 0. In the Fox—Landi

approach , the “optimal” value of 0 is selected from a grid of M equally

spaced values,

0
0
> 0

1
> > 0

M > °  -

The optimal value of 0 is the 0K’ K c (0, . . .,  M}, whose corresponding
total investment cost is closest to C.

Fox and Landi suggest that their method is a single—pass method ;

that is, only one pass through the item data base is necessary to ob—

tam the optimal solution. The storage requirement to effect this

one—pass approach is potentially enormous. For a moderately sized

problem having 3000 items , 20 bases , and M = 63, almost 4 million item

stock levels must be saved , plus possibly millions of additional item

data elements reflecting fill rates , probability of no stockout at an

arbitrary point in time , expected base backorders , etc. Furthermore ,

because there may be no simple method for estimating suitable bounds
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on the values of the multipliers , much larger values of M may be re-
quired to ensure adequate approximation of the budget.

It has been the author ’s experience that Air Force personnel have

difficulty cstimating a reasonable range for 0 for large problems .

This is not surprising because the data used in the model frequently

change in real situations , thereby causing the optima l value of the

multiplier to change . Furthermore , changing the multiplier ’s magnitude

by 10 6 
or less often causes the correspond ing total cost to change by

many millions of dollars. Consequently, 2
10 values of 0 have been used

in some Air Force applications to make the system “foolproof.” In these

cases 60 million or more item stock levels would be needed to be ex-

plicitly stored——plus a considerable amount of other item and base

data——to make the Fox—Landi algorithm truly a one—pass method .

On the other hand , if their method is altered so that the item

data are passed through a second time, it is possible to eliminate

virtually all the requirement for secondary storage . In the first

pass , only the running total cost corresponding to each
K C (0, ..., M} , is saved . At the end of this phase the “optimal”

multiplier value , 0*, is established . The second phase of the algo-

rithm requ ires a second pass through the data base . In the second

pass , the optimal stock levels for each location are found for all

items by resolving problem P8 with 0 = 0~~.

in some app lications the Fox—Landi one—pa ’- s method is c lear ly

infeasible; that is, there may not be enough peripheral storage ca-

pacity to save all the data. If storage capacity is available , there

is a tradeoff between the time and cost required to store and access

the data in the secondary memory using the one—pass method , and the

time and cost to recompute the stock levels using the second method .

For realistic Air Force problems , the two—pass method appears to he

the only feasible approach given current hardware c on s t r a i nt s  i f M is

large enough to guarantee that a solution can be f o u n d  t ha t  c l o s e ly

approximates the target bud get.

-~‘ —— -- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- _ ~~~~~_ - --
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THE -BISECTION METHOD

A th i rd  way to solve problem P 1 is a sli ght m o d i f i c a t i o n  f o r  the

Fox—Landi algorithm called the b isect ion method , which employs a bi-

section search to find the optimal value for 0. This procedure requires

initial upper and lower bounds on the optimal value of 0. Call these

and 0L’ respectively. The bisection method is as follows :

1. Set ~ = +

2. Solve problem P8 with 0 = 0 for each item.

3. If the total cost of the solution obtained in step 2 exceeds

0 , then rep lace 0L w i t h  6; o therwise , replace O
~ 

w i t h  0

4. If a stopp ing c r i t e r i on  has not been met (such as a f ixed

number of iterations or an error tolerance), return to step

1; otherwise , stop.

The major drawback to the bisection approach is that a separate

pass through the item data base is required at each iteration of the

algorithm . This algorithm performs very well in terms of convergence ,

and we have found that it almost always produces solutions that are

within 1/2 percent of the targe t budget using 10 bisections.

COMPARISON OF METHODS

The closeness of the solut ions to the target budget generated by
either the Fox—Landi method or the bisection algorithm depends on how

broad a range of multiplier values must be searched for a fixed value

of M or a fixed number of bisections. It should be pointed out that

both of these methods only yield an approximation to the optimal multi-

plier value (assuming one exists).

Of the methods discussed thus far , it has been the experience of

the author , as well as of Fox and Landi [21, that the latter two algo-

rithms dominate Sherhrooke ’s al gori thm in run t imes by an ord er of mag-

nit ude or more on real problems given reasonable es t imates of uppe r and
lower bounds for the Lagrangian multiplier . Thus in the comparisons

we will report , only these two Lagrangian methods will be discussed .

. i
~

—
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APPROXIMATION METHOD S

Earlier we described an approximation method for estimating the

optimal values of 0 and each N .. . Several options are open for  imple-

menting this approximation method . One way to implement it is to use

a two—phase approach. Call this approach the First Approximation

Kethod . The values of a .  and b
1 are computed in the first phase of

th is  method and the optimal value of 0 is estimated using Eq.  (El) .

In the sec ond phase, we solve problem P8 for each item, using the esti-
mate of the optimal 0. This approach has two major advantages over the

Fox—Landi method :

1. The estimate of the optimal multiplier can be obtained withou t

prespecif ying a range of values , and computation time to ob-
tain the est imate does not depend on the uncertainty of the

mult ipl ier  value .

2. The computation time to find an est imate of the opt imal  multi-

plier is much smaller.

If the two—pass version of the Fox—Landi algorithm is used , the second

phase of that method and the approximation method are the same. The

one—pass version of the Fox—Landi algorithm requir es cons iderably more

storage , and also requires more computer time to determine the optimal

stock levels than this approximation method requires.

This approximation approach also has advantages over the bisection

method:

1. Only two passes through the data base are required as opposed

to seven or more required for the bisection method in practice.

2. No stock levels need to be saved ; in the b i sec t ion  method it

is necessary to save all stock levels and other data for three

multip lier values.

Another al gorithm can be emp loyed that directly uses the results

of the approx imation problem , that is, problem P2. Call this approach

the Second Approximation Method . This a lgori thm is of in te res t  in

---4
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s i tuat ions  in which we only want to compute total system stock for

each item and are not particularly interested in computing the optima l

distribution of the assets. Determining the optimal allocation of a

budget among items is of primary importance when purchasing inventory

or making budgetary projections for spares for different systems . In

these cases, distribution decisions are usually not that critical.

This Second Approximation algorithm also consists of two phases.

In the first phase we estimate the values of the a~ and b . parameters ,

and in the second phase we determine total system stock for each ite~
using the algorithm described in Sec . III and rounding N . to the

nearest integer. The algorithm requires one pass throug h the item

data base and one pass through an item file consisting of a ., h ., and

c .. The ma j or advantage of th is  approach is t h a t  it e l i m i n a t e s  the

stock allocation phase of both the Fox—Land i method and the First

Approximation algorithm . 

~~~~~~~ - . _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
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V. A COMPUTATIONAL COMPARISON OF VARIOU S ALGORITHMS

The Fox—Land i algorithm , bisection algorithm , and the two approxi-

mation methods have been coded and tested on several sample sets of

data for the Air Force ’s new F—lS fighter . Since all of the tes ts
yielded the same general results , we will discuss only two of them

in detail. The first test consisted of a 75—item samp le and had 3
operating bases. The flying programs were very different at each base.

In the second test , 125 items were included in the sample with demands
occurring at S bases. In the second test , only the Fox—Landi and the
two approximation methods were compared . The run times stated for both

approximation algorithms include the time required to estimate the

values of a. and b .. In all Fox—Landi calculations, a maximum of 128
1 1

multipl ier values were examined ; ten bisections were used in all appli-

cations of the bisection method . Furthermore , in both test cases all
stock levels for all relevant multiplier values were stored in main

memory . Thus, although the reported computation times, which inc lude

comp ile t imes, are roughly equal for all the algor ithms , they are
biased in favor of the Fox—Landi method because this type of storage

would be impossible for larger problems. In addition , the range of
multiplier values considered in the test of the Fox—Land i and bisection

methods was selected after estimating the optimal multiplier value

using the First Approximation Method . Thus the tes t results are biased
in favor of them , since the range of multiplier values was much smaller

t h a n  w ou l d  normally be the case.

The data displayed in Tables 1 and 2 indicate how well each approach

. t r ~~x i - ~ite s a g iven ta rge t bud get fo r  the  two t e s t  d a t a  se t s .  W i t h o u t

t n i h t  the  b i s e c t i o n  method produced  s o l u t i o n s  t h a t  best  matched  the

t rget  b u d g e t s , fo l l owe d in o rde r  by the Second .\ p p r ox i m at  ion ~t & - t  hod ,

lie ‘. - - L a n d  i m ethod , and th e F i r s t  A ppro :- :  i mat ion ~tethod - As - - i c i : t  i ( ‘fled

t i l e  r e s u l t  a r e  b i a s e d  in favor ot  b o t h  the  Fox —l an d i  and bi—

s e t  ion methods due  to the i n i t i a l iz a t i o n  of the range of mul tip l i t-r

L 

va lues . From a practical viewpoint , all approaches worked a c c e p t a b ly

well in meeting the target budgets. Furthermore , the s tock levels

-

~ 

---- -
~~-
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Table 1

75-ITEM , 3—BASE TEST CASE

Total Cost ($ millions)

Target  Firs t  Second
Budget Bisection Fox—L ,ndi Approximation Approximation

3.68 ~.67 3.68 3.63 3.63
3.97 L99 3.92 3.82 4.03
4.27 4 . 2 7  4.27 4.30 4.18
4.57 4.57 4.57 4.62 4.61
4.87 4.87 4.85 4.87 4.75
5.16 5.16 5.18 5.09 5.17
5.46 5.46 5.42 5.38 5.49
5.76 5.76 ~.76 5.75 5.79
6.05 6.06 6.05 6.06 6.08
6.35 6.34 6.~~8 6.28 6.33
6.65 6.65 6.63 6.63 6.73
6.94 6.89 6.80 6,87 6.92
7.24 7.24 7.19 7.27 7.24
7.54 7.54 7.57 7.68 7.51
7.83 7.84 7.77 7.80 7.83
8.13 8.14 8.24 8.20 8.05
8.43 8.42 8.50 8.42 8.42
8.73  8 .73  8.50 8 .74  8 .77
9.02 9.02 9.04 9.11 9.00

Execut ion
time
(sec) 92.57 19.57 11.59 4.57

generated by the various approaches were virtuall y the same for similar

bud gets. Consequentl y, total system expected backorders , for all prac-

t i ca l  purposes , are i n d i s t i n g u i s h a b l e ;  that is , the backorde r  v er s u s

investment curves v i r t u a l l y  co inc ide  among these various approaches.

Exact comparison of computed stock levels and expected hackorders can-

not be made among the competing method s since the a l b e i t  ion of t he

available budget in each case depends on the way each algorithm est i-

mates the Lagrangian multi pli er.

The area in which th e methods cle:i rlv differ is In (-ompiltat Ion

time . The approximation methods require substantially l ess time than

either the Fox—Landi method or the more time—consuming bisection method . 

—
~~-
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Table 2

125—ITEM , S—BASE TEST CASE

Total Cost ($ millions)

Target First Second
Budget Fox—Landi Approximation Approximation

26.4 26.7 24.8 26.6
27.6 27.6 26.2 27.9
28.7 28.7 27.6 28.9
29.8 30.0 29.5 29.8
31.0 31.2 30.7 30.8
32. 1 32.1 32.0 32.2
33.2 33.3 33.1 33.1
34.4 34.4 34 .3 34.2
35.4 35.5 35.9 35.7
36.6 36.8 37.0 36.7
37.8 38.0 38 .1 37.7
38.9 38.6 39.3 39.2
40.0 39.9 40.6 40.0
41.2 41.1 42.1 41.3
42.3 42.5 43.9 42.4
43.4 43.3 44.7 43.7
44.6 44.5 45.6 44.2
45.7 4 6.3 46.1 45.9
46.8 47.2 47.3 46.7

Execution
time
(sec) 36.98 16.28 4.74

NOTE: All programs are run on an IBM 370/168.

Other  exper imentat ion has shown tha t  the percentage differenc e in corn—

p u t a t i o n  t imes tends to be even more substantial as t he  number  of i t t -nc

cons idered increases.

Thus the approximation methods produce answers that are as good ds

those produced by the Fox—Landi method and the bisection method , only
much more qu ickly than those methods. The bisection method does , h ow-

ever , match target budgets slightly better than the approxima ti on
methods. However , the approximation al gori thms are v i r t u a l1~- foo lproof ,

which is perhaps thei r  greatest advantage . The user does not have to

spec if y the range of multiplier values or the number of  bisections in

advance. This eliminates one problem associated with implementing
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either the Fox—Landi or bisection algorithms. In view of these ob—

servations , the approximation procedures developed here appear to be

superior fo r  use on real problems .

I

-
- --

~

- --

~
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VI. ESTIMATION OF THE OPT IMAL DEPOT STOCK LEVEL

We have described Sherbrooke’s algorithm and several Lagrangian
type methods for solving problem P1, and have demons trated that it is
poss ible to signif icantly reduce the computational requirement of the
Fox—Landi method by solving an approximation problem to obtain a good

es timate of an appropriate value for the Lagrangian multiplier. In

this section we describe a different way to reduce the computational

requirements of all the algorithms that have been discussed . As can

be seen by reexamining Sherbrooke ’s approach (see problem P6) and the

Fox—Land i algorithm (see problems P8 and P9), the amount of computation

required to solve problem P1 using these methods is directly propor tional
to the number of depot stock levels explicitly examined . Consequently ,

if this number can be reduced , then the total time required to compute
an optimal solution can also be reduced .

The method that we describe in this section to estimate the optimal

depot stock level will be of par ticular value when the expected number
of units in the depot resupply system for mn item is 20 or more . The

approximation algorithm can reduce computation time for the algorithms
described in Sec . IV by as much as 90 percent for these high demand
items.

We have indicated how the optimal base stock level , call it se.,

can be calcu lated given the depot stock level 5i0 and the value of 8.
In par t icu lar , we have shown tha t s’~. is optimal if it is the smallest

non—negative integer for which

~ ~~~~~~~~~~~~~~~~ ~ 
0c
~x>sij

We now develop a different but equivalent way of characterizing S~ j
.

To simplify notation , let us suppress the item index i. We will also

assume that P (xIA ~T~ (s0
)) has a Poisson distribution .

Define the convex backorder function for base j as 

— — ~~~- .-~~~~~~~
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B.(s.; ~ (x — sjp(xIX .T.(s0
))

x>s

for S
i 

> 0 and integer , and the piecewise linear completion of B.,
c~t1l it B., as follows :

3

B.(t; s
0) if t is a non—negative integer .

[B .(s.; — B.(s. — 1; s0)](t 
— (s. — 1))

B.(t; s
0
) ~ + B(s. — 1; se

), S
i 

— 1 < t < s.

where S
i 

is a non—negative integer ,

and B(—l; s
0

) ~

Let

AB .(s .; S~~) ~ B . ( s .;  SO
) — B .( s . — 1; so )

when S. is a non—negative integer , and

D(s .; s0
) ~ {v: AB .( s .; s0

) < v < AB .( s . + 1; -

Observe that D .(s.; s
0
) U {t~B.(s.; s0

)} is the set of subgradients of

B. at S.. Then an alternative way of verifying that s~ is an optima l

base stock level is to show that — Oc c D(s~~; s0) .

Next let

F(s
1
, s2 , ...

~ 
S
n ; 

s
0
) 

~ ~~~ 

(B~ (s~~; s0) + Ocs~ ) -

By dropp ing both the integrality and non—negativity restrictions on
we obtain the following relaxation of problem P8:

mm {Ocs0 
+ mm (F(s

1
, . . . ,  s ;  s

0
): s

0 
fixed}} . ~pio~

so s. O,l,... 

—~~~~
- - --—~~~—.,-~~~~~~~~~~
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If s
0 
is the optimal solution to problem PlO, then

(E3)
so

But

m ~B. ~T.V __
~L _ .L

— 

~ ~T. ~so 3 1 3 0

Furthermore , by writing B.(s.; s
0
) as

~ Kp(K ÷ s.IAT .(s0
) )

K=l -~ -‘

we see that

K+s.-l
BB . —X .T.(s ) (A .T .( s  )) ‘~

V A K  ~~
j 0 

~~
j 0

~T. K=l ~ 
e (K + — 1)!

K+s .

— ~ KX e~~
j
T
j~~ 0

) (A .T
1

(s
0

)) ~

K l  (K + s .) !

—X .~~B(s .; s
0
) -

As we discussed in Sec. II , the fu nction

B
0

(s
0
) ~ ~ (x — s

0
) p ( x ~XD)

x>s

can be closely approximated by an exponential function of the form
—b 0s0a0e , where a0 and b0 are positive real numbers . Then

~

-—--- - -

~
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—b
T.(s

0
) r .A . + (1 — r.)B. + -

~~ a0e 
0 0

and

3T . ( l — r .) — b s
a b e  0 0

as
0 

A 00

Upon combining these observations we see that

~~0 j=l 
A~Li~ (s~ ; 

~~~ 

(1 r
1
) 
a0

b
0
e 

0 0

Recall that —Oc C D(s~~; s
0
). Consequently —Oc approximates the

marginal reduction in backorders at base i when the stock level at that
base is s*. After making this substitution and representing this fur—

ther approximation of aF/as
0 

by aF/as0, we see tha t

in — b s1 00
L (l— r .)A . — O c a b e

as
0 j=l ~ 3 A  0 0

—b0s0
= — Oca 0b0e

Substituting this approximation into Eq. (E3) we obtain the follow-

ing es t imate of the opt imal depo t stock level:

= - 
~~

-_ 

~n {__~_ } . (E4)

Recall the value of is derived based on an exponential approxi-

mation of B
0
(s
0
). As the average number of units in the depot repair

cycle increases, that is, as AD increases, the quality of this expo-

nential approximation improves in the reg ion in wh ich the op t imal depo t

stock level should be located. Consequently, the approximation should 

- - -~~~~- - -
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be most accurate in these cases. But , the problems for which the
search for the optima l depot stock level is most time—consuming for

the algorithms described in Sec . IV correspond to the  i tems having  a

large number of units in depot repair. Therefore , the proposed ap-

proximation method will be most appropriate for t h e items requiring

the hreatest amount of computational effort.

The approach we have described for estim ating thu o p t i m a l d e p o t

- r . ock level has been Loded and tested using :i sa le of 40 F—i S air—

c r a f t  i tems . The test consisted of two sets of  r o s s .  In t h e  f i r s t  - s e t

monthly flying was divided among 3 bases; in the s econd set the same

monthl y flying program was divided among S bases. The total budge t

distributed among the 40 items ranged from $34 mi l l ion to $65 m i l l i o n

in the first set of runs , and from $34 million to $88 million in the

second set. Table I contains the data indicating both the optimal and

estimated depot stock level for each item in both runs .

As shown in the table , there is usually no single optima l depot
stock level for an item . Rather the optimal value depends on the

amoun t of t o t a l  i t e m  system stock available for  d i s t r i bu t i on  among

the depot and bases . The estimate of optimal depot stock is quite

close to the  optimal value in all cases. Furthermore , the increase

in expec t ed sy s tem  h ackorde r s  us ing  the estimated depot stock levels

rather than t h e op t ima l  levels is genera l ly  smal l .  For most it e m s

t h e  i n~ rcase is substantially less than .1 backorders .

The r e s u l t s  of t h e  t e s t s  i n d i c a t e  t h a t  it is p o s s i b l e  t o  t~s t im a te

cl -s ly the optima l depot stock level using Eq. (E4). Additionally ,

incorp rat ing this method for estimating the optimal depot stock into

the algorithms described in Sec. IV will considerabl y reduce th e search

r e q u i r e d  to f ind the opt ima l depot  s tock level  and w i l l  therefore

marked ly  reduce the computational time needed to solve problem P1

using these algorithms .

--—- --
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Table 3

CO MP A RI  SON OF OPTIMAL A NT) ESTIMATED DEPOT STOCK LEVELS

Opt  ima l Depot  Stock Levels
L o t  im at  ed

Case I Case II Optimal Depot
I t em (3 bases) (5 bases) Stock Levels

1 4—7 5—9 6
2 1,2 1—3 1
3 6 6,7 6
4 0—2 2,3 1
5 10,11 8—12 10
6 18—21 18—21 ,25 19
7 1,2 1,2 1
8 2 3,4 2
9 5,6 6,7 6
10 1 1,2 1
11 4,5 4—6 5
12 1 1 0
13 0—2 0,1 0
14 1—3 1—3 2
15 2—4 3,4 3
16 8,9 8 ,9 8
17 1,2 1,2 1
18 3,4 3—5 3
19 12—14 13—14 12
20 9—12 10—13 10
21 21—27 22—28 23
22 4,5 4—6 5
23 1 1—3 1
24 1,2 2,3 2
25 5—7 6,7
26 16 16 16
27 3 3,4 3
28 40—42 41—43 40
29 8—lU 9,10 9
30 1 2 1
31 1,2 1,2 1
32 8,9 8,9 8
33 4 ,5 5 ,6 5
34 9—11 9,10 10
35 6,7 7 ,8 7
36 1—3 2 2
37 1,2 1,2 1
38 7 ,8 7—9 7
39 2,3 3,4 3
40 41—43 42—44 41

.- --- ----~~~~- -
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